Feat: Mark smashes into the Moon, dispersing a huge crater of rock through a massive shockwave / dust cloud

I've already calculated the volume of the crater, at 4.4217944e+19 cubic cm
- Density of moon rock: 3344 kg/m3
- Mass dispersed: 4.4217944e+19*1e-6*3344 = 1.478648e+17 kg
Now to calculate the distance dispersed for the Moon rock, I'll do a low end of the shockwave's height, and a high end of the shockwave's radius, first correcting the angular diameter of the Moon
- True Moon diameter: 3475 kilometers
- Corrected diameter: sqrt(1-(tan(35)*(1757/494))^2/((tan(35)*(1757/494))^2+1))*3475 = 1773.35 km
- Panel height: 494/1757*1773.35 = 498.6 km
- Shockwave height: 201/1920*498.6 = 52.197 km
- Shockwave radius: 632/1920*498.6 = 164.123 km
The feat happens fairly fast, and in the Amazon show, the shockwave only takes a few seconds in total. So I'll use a timeframe of 3 seconds
- Low end speed: 52.197*1000/3 = 17399 m/s
- High end speed: 164.123*1000/3 = 54708 m/s
- Low end ke: 1.478648e+17*17399^2*.5 = 2.2381201e+25 joules (5.3 petatons of tnt)
- High end ke: 1.478648e+17*54708^2*.5 = 2.2127711e+26 joules (53 petatons of tnt)