Using this image as a base I will find the pixel sizes of the short and long sides of this Las Noches rectangle.
Measurements
Closer leg/true leg pixel size | 140.4 px
Further leg | 104.2 px
Observer perceived distance between legs | 67 px
True distance between legs/short side of LN | 84.1 px
Long side of LN | 944.8 px
Dome height | 176.2 px
Panel height | 1601 px
Calculations
I will denote the legs of LN physical size/true pixel size as x.
Observer-closer leg distance = x * 1601 / [140.4 * 2 * tan(35)] = 8.14x
Observer-further leg distance = x * 1601 / [104.2 * 2 * tan(35)] = 10.97x
Observer perceived distance between legs = 10.97x - 8.14x = 2.83x
True leg distance/short side of LN = 2.83x * 84.1 / 67 = 3.55x = 498.5 px
LN pixel perimeter = 2 * (498.5 + 944.8) = 2886.7 px = 720 km
Distance per pixel = 720 km / 2886.7 px = 249.4 m per px
Now that we have the distance per pixel in the frame that matters, I can find the volume of LN using the accepted thickness here.
Outer LN length/major axis = 944.8 px * 249.4 m / px = 235654 m
Outer LN width/minor axis = 498.5 px * 249.4 m / px = 124346 m
Outer LN dome height = 176.2 px * 249.4 m / px = 43948.2 m
LN height = 140.4 * 249.4 m / px = 35018.9 m
Inner LN length/major axis = 235654 - 1635 = 234019 m
Inner LN width/minor axis = 124346 - 1635 = 122711 m
Inner LN dome height = 43948.2 - 1635 = 42313.2 m
LN volume = outer volume - inner volume = 35018.9 * (235654 * 124346 - 234019 * 122711) + (4 * pi / 3) * (235654 * 124346 * 43948.2 - 234019 * 122711 * 42313.2) = 3.25e14 m^3 = 3.25e20 cc
Finally, with the true volume of LN shell (I won't include the Espada's castles until this calc gets accepted because I'm lazy, so consider this a lowball) I will calc the energy required to vaporize (high end) and pulverize (low end).
Vaporization = 3.25e20 * 25700 = 8.35e24 joules or 2.00 Petatons (6-A) [ACCEPTED]
Pulverization = 3.25e20 * 214.35 = 6.97e22 joules or 16.65 Teratons (6-B) [ACCEPTED]
Results[]
Espada >= Res Ulq = 2.00 Petatons (6-A)
Espada < Res Ulq = 16.65 Teratons (6-B)