Articles about Statistics Explanation Pages |
Tier • Attack Potency • Speed • Lifting Strength • Striking Strength • Durability • Intelligence • Range • Stamina |
---|
Destructive Capacity
Destructive Capacity is the term used to determine the amount of damage a character can produce. It is normally the deciding factor of VS matches along with Speed. It is measured in units of energy.
Attack Potency
An alternative term for Destructive Capacity which has more direct meaning: The Destructive Capacity that an attack is equivalent to. A character with a certain degree of attack potency does not necessarily need to cause destructive feats on that level, but can cause damage to characters that can withstand such forces. As such it isn't proof of a low attack potency, if a character's attacks only cause a small amount of destruction.
We are aware that this technically violates the principle of conservation of energy, as it should logically disperse upon impact, but fiction generally tends to ignore this fact, so we overlook it as well.
Also, kindly remember that Attack Potency is the measure of Destructive Capacity of an attack, and as such, is measured via its energy damage equivalent. Hence, characters that destroy mountains or islands are not automatically mountain or island level, especially if they are small. The attack potency depends on the energy output of a single attack, not the area of effect of the attack.
Keep in mind that certain tiers do not necessarily correspond to the destruction of their namesakes in any meaningful fashion. This is because the minimum requirements for these tiers are arbitrary values.
Here is a list of the tiers in question:
|
Tiers between 9-A and 3-B, even those which do correspond with their namesakes, should not be assigned unless there are accepted calculations, multipliers, and/or reliably stated precise Joule values that correspond with those ratings, as many verses can have their own context result in these feats being above or below their namesakes. The exceptions are that the lower borders of 5-C, Low 5-B, 5-B, 5-A, High 5-A, 4-C, 4-B, 4-A, 3-C, and 3-B can be considered standard calculations for destroying a moon, a small planet, a planet, a large planet, a brown dwarf, a common star, a solar system, two or more solar systems, a galaxy, and two or more galaxies respectively, and adding those tiers based on those specific feats is allowed. However, it is still greatly preferable to use much more exact accepted calculations for individual feats of these natures.
Attack Potency Chart
Tier | Level | Energy in
Conventional Terms |
Energy in Tonnes
of TNT Equivalent |
Energy in Joules | High End to Low End ratio |
---|---|---|---|---|---|
10-C | Below Average Human | ~0 Joules to
60 Joules |
~0 to 1.43x10-8 | ~0 to 6x101 | NA |
10-B | Human | 60 Joules to
106 Joules |
1.43x10-8 to 2.53x10-8 | 6x101 to 1.06x102 | ~1.77x |
10-A | Athlete | 106 Joules to
300 Joules |
2.53x10-8 to 7.17x10-8 | 1.06x102 to 3x102 | ~2.83x |
9-C | Street | 300 Joules to
15 Kilojoules |
7.17x10-8 to 3.59x10-6 | 3x102 to 1.5x104 | 50x |
9-B | Wall | 15 Kilojoules
to 0.005 Tons |
3.59x10-6 to 5x10-3 | 1.5x104 to 2.092x107 | ~1394.67x |
9-A | Small Building | 0.005 Tons
to 0.25 Tons |
5x10-3 to 2.5x10-1 | 2.092x107 to 1.046x109 | 50x |
8-C | Building | 0.25 Tons
to 2 Tons |
2.5x10-1 to 2 | 1.046x109 to 8.368x109 | 8x |
High 8-C | Large Building | 2 Tons to
11 Tons |
2 to 1.1x101 | 8.368x109 to 4.6024x1010 | 5.5x |
8-B | City Block | 11 Tons to
100 Tons |
1.1x101 to 102 | 4.6024x1010 to 4.184x1011 | ~9.1x |
8-A | Multi-City Block | 100 Tons to
1 Kiloton |
102 to 103 | 4.184x1011 to 4.184x1012 | 10x |
Low 7-C | Small Town | 1 Kiloton to
5.8 Kilotons |
103 to 5.8x103 | 4.184x1012 to 2.42672x1013 | 5.8x |
7-C | Town | 5.8 Kilotons to
100 Kilotons |
5.8x103 to 105 | 2.42672x1013 to 4.184x1014 | ~17.2x |
High 7-C | Large Town | 100 Kilotons
to 1 Megaton |
105 to 106 | 4.184x1014 to 4.184x1015 | 10x |
Low 7-B | Small City | 1 Megaton to
6.3 Megatons |
106 to 6.3x106 | 4.184x1015 to 2.63592x1016 | 6.3x |
7-B | City | 6.3 Megatons
to 100 Megatons |
6.3x106 to 108 | 2.63592x1016 to 4.184x1017 | ~16x |
7-A | Mountain | 100 Megatons
to 1 Gigaton |
108 to 109 | 4.184x1017 to 4.184x1018 | 10x |
High 7-A | Large Mountain | 1 Gigaton to
4.3 Gigatons |
109 to 4.3x109 | 4.184x1018 to 1.79912x1019 | 4.3x |
6-C | Island | 4.3 Gigatons
to 100 Gigatons |
4.3x109 to 1011 | 1.79912x1019 to 4.184x1020 | ~23.25x |
High 6-C | Large Island | 100 Gigatons
to 1 Teraton |
1011 to 1012 | 4.184x1020 to 4.184x1021 | 10x |
Low 6-B | Small Country | 1 Teraton to
7 Teratons |
1012 to 7x1012 | 4.184x1021 to 2.9288x1022 | 7x |
6-B | Country | 7 Teratons
to 100 Teratons |
7x1012 to 1014 | 2.9288x1022 to 4.184x1023 | ~14.3x |
High 6-B | Large Country | 100 Teratons
to 760 Teratons |
1014 to 7.6x1014 | 4.184x1023 to 3.17984x1024 | 7.6x |
6-A | Continent | 760 Teratons
to 4.435 Petatons |
7.6x1014 to 4.435x1015 | 3.17984x1024 to 1.855604x1025 | ~5.8x |
High 6-A | Multi-Continent | 4.435 Petatons to
29.6 Exatons |
4.435x1015 to 2.96x1019 | 1.855604x1025 to 1.24x1029 | ~6674x |
5-C | Moon | 29.6 Exatons to
433 Exatons |
2.96x1019 to 4.33x1020 | 1.24x1029 to 1.81x1030 | 14.62x |
Low 5-B | Small Planet | 433 Exatons
to 59.44 Zettatons |
4.33x1020 to 5.944x1022 | 1.81x1030 to 2.487x1032 | ~137x |
5-B | Planet | 59.44 Zettatons
to 3.8 Yottatons |
5.944x1022 to 3.8x1024 | 2.487x1032 to 1.59x1034 | ~63.9x |
5-A | Large Planet | 3.8 Yottatons
to 16.512 Ronnatons |
3.8x1024 to 1.651x1028 | 1.59x1034 to 6.906x1037 | ~4343.4x |
High 5-A | Brown Dwarf | 16.512 Ronnatons
to 7.505 Quettatons |
1.651x1028 to 7.505x1030 | 6.906x1037 to 3.139x1040 | ~454.53x |
Low 4-C | Small Star | 7.505 Quettatons
to 136.066 Quettatons |
7.505x1030 to 1.36x1032 | 3.139x1040 to 5.693x1041 | ~18.14x |
4-C | Star | 136.066 Quettatons
to 760.516 Quettatons |
1.36x1032 to 7.605x1032 | 5.693x1041 to 3.182x1042 | ~5.59x |
High 4-C | Large Star | 760.516 Quettatons
to 29.23 Foe |
7.605x1032 to 6.986x1035 | 3.182x1042 to 2.923x1045 | ~918.6 |
4-B | Solar System | 29.23 Foe
to 20.08 TeraFoe |
6.986x1035 to 4.799x1047 | 2.923x1045 to 2.008x1057 | ~686.97 billion x |
4-A | Multi-Solar System | 20.08 TeraFoe
to 10.53 ZettaFoe |
4.799x1047 to 2.517x1056 | 2.008x1057 to 1.053x1066 | ~524.4 million x |
3-C | Galaxy | 10.53 ZettaFoe
to 8.593 YottaFoe |
2.517x1056 to 2.054x1059 | 1.053x1066 to 8.593x1068 | ~816.05x |
3-B | Multi-Galaxy | 8.593 YottaFoe
to 2.825 QuettaexaFoe |
2.054x1059 to 6.752x1082 | 8.593x1068 to 2.825x1092 | ~1.04x1023x |
3-A | Universe | 2.825 QuettaexaFoe to any higher finite number | 6.752x1082 to any higher finite number | 2.825x1092 to any higher finite number | Not available |
Explanation
Standard sizes
- Moon level: Earth's satellite Moon.
- Small Planet level: Mercury.
- Planet level: The Earth.
- Large Planet level: Uranus.
- Brown Dwarf level: Brown Dwarf (specifically, the OTS 44).
- Small Star level: VB 10.
- Star level: The Sun.
- Large Star level: Rigel
The values for 5-A and above are obtained from here. The calculation assumes that the blast is omni-directional (spherical), as is generally the case in most fictional occurrences, and that the energy output is sufficient to destroy the entirety of the cosmic structure.
- Solar System level: The star system known as the Solar System.
- Multi-Solar System level: Instead of doubling the value of Solar System level, the distance between two such systems needs to be accounted for as well. The calculation for energy required to destroy two solar systems was done, with the following assumptions:
- Distance between them as the minimum distance between Sun and the next closest star, the Alpha Centauri.
- A spherical blast, strong enough to obliterate the contents of both solar systems at the same time.
- Hence, the value obtained is the energy required to destroy two solar systems at a realistic distance.
- Galaxy level: The Milky Way galaxy.
- Galaxies in fiction tend to be destroyed completely, not dissociated. Hence, it is far more logical to index a common occurrence of compete obliteration instead of an obscure one like dissociation.
- We have a different interpretation regarding black holes. Simply put, we disagree with the premise of utilization of black holes for energy outputs, primarily because black holes rarely follow any scientific logic whatsoever. To know more, continue to read here.
- Multi-Galaxy level: Instead of doubling the value of Galaxy level, the distance between two galaxies needs to be accounted for as well. The calculation for energy required to destroy two galaxies was done with the assumptions:
- Distance between them as the minimum distance between Milky Way Galaxy and the next closest similar-sized galaxy, the Andromeda galaxy.
- A spherical blast, strong enough to obliterate the contents of both galaxies at the same time.
- Hence, the value obtained is the energy required to destroy two galaxies at a realistic distance.
- Universe level: Given that the universe's actual size is unknown, we do not know the amount of energy that would be required to destroy all matter within it. As such, the bare minimum value for the observable universe was calculated as a lower border instead (The PSRJ0348+0432 was used as a base). Any greater finite number is also included within this tier, whereas countably infinite numbers are included under High Universe level.
Omitted levels
- Small Moon level: While most other tiers have been into 3 sub-tiers, Moon level does not have Small Moon level due to the existence of Multi-Continent level. Simply put, the two intersect, and Multi-Continent level is far more common than Small Moon.
- Small Galaxy level: Same reason as the one for Small Moon level, with the tier clashing with Multi-Solar System level instead.
- Large Galaxy level: Large Galaxy level was omitted because unlike planets, galaxies in fiction rarely specify the size of said galaxy, and instead go from galaxy to multiple galaxies. As such, a "Large Galaxy level" rating would not only be confusing, but also redundant.
- Higher and lower layers/levels of reality: These levels are not listed because they are not restricted to the same parameters for energy requirement. The energy for such levels cannot be calculated.
Additional terms
"+" symbol
Currently misused to an extraordinary degree on the wiki, the "+" symbol should be used when the Attack Potency has been calculated to be greater than the average (arithmetic mean) of the high end energy level and low end energy level of a particular tier.
The "+" symbol can also be used if there exists a calculation extremely close to the arithmetic mean, and characters scale above the calculated feat by a wide margin, for example being able to defeat enemies on such levels with a single casual attack.
Example: Average of Large Building level is: [2 Tons (low end) + 11 tons (high end)]/2 = 6.5 Tons (the arithmetic mean). All energy levels from 2 Tons to 6.5 Tons should be listed as Large Building level, whereas all energy levels from 6.5 Tons to 11 Tons should be listed as Large Building level+.
At least
Should be used to denote the lower cap of a character, if the exact value is indeterminate.
At most
Should be used to denote the higher cap of a character, if the exact value is indeterminate.
Likely
Should be used to list a statistic for a character with some basis, but inconclusive due to the justification being vague or non-definitive. The probability of the justification in question for being reliable should be favourable. This term should be used sparingly.
Possibly
Should be used to list a statistic for a character with some basis, but inconclusive due to the justification being vague or non-definitive. The probability of the justification in question for being reliable should be notable, but mild. This term should be used sparingly.
Higher
This should be used to denote a character's weapons, techniques, or attributes that are much stronger than their base level, but still within the same tier. For example, a character that is Solar System level but has an attack that multiplies their power by 100 times. In this instance it should be written as “Solar System level, higher with that ability or technique”.
Furthermore, higher may also be used to denote a case where the character is possibly or likely a higher tier, but to what degree is not specified. This is specifically referring to cases such as “At least 4-B, likely higher” or “At least Solar System level, likely higher”.
Lower
Similarly to the "Higher" term, "Lower" should be used to denote a character's weapons, techniques, or attributes that are significantly weaker than their base level, but still within the same tier.
Varies
These are characters, weapons, etcetera, whose power levels are subject to change, as well as profiles of races/species whose power levels vary depending on the member. “Varies” ratings should only be given to characters who have a canon explanation for why their statistics fluctuate. This does not include characters who are simply inconsistent or have unexplainable variations in their displayed power level. The fluctuations in power must have a clear and logical basis within the character's respective canon.
Examples of Qualifying Characters
- Characters with clearly defined canon explanations for power fluctuations:
- Kryptonians and Power Ring users from DC Comics
- The Hulk and other Gamma Mutates from Marvel Comics
- “Determination” users from Undertale
- Power Mimicry users
Examples of Non-Qualifying Characters
- Characters who are simply inconsistent without a canon explanation:
- Certain iconic cartoon characters
Notes
- To know the equivalent prefix for a particular exponential value, please see this page.
- The required sizes for shattered mountains, or islands, to be considered as "Mountain level", or "Island level".
- An easy to use reference list for estimating the tiers of different explosion sizes.
- A useful long reference list for the tiers of many types of common feats.
- A Foe is a unit used to measure the energy released by a supernova, and is equivalent to 1044 Joules.
- The reasons for our Human and Athlete level borders.
- The reasons for our Street and Wall level borders.
- The reasons for some of our Small Building level to Country level, and Moon level to Planet level borders. (Backup)
- The reasons for our Continent level and Multi-Continent level borders.
- The reasons for our Large Planet level to Universe level borders.
- When used with an equal amount of energy, sharp and spiky weapons tend to be able to overcome higher durability than blunt ones. However, this cannot be considered proper Durability Negation. If a sharp or pointy weapon is shown to have kinetic energy on the level of a certain tier, it can contribute towards the character receiving an unquantified "possibly higher" rating.
- Don't make discussion threads for changing the baseline of 3-A until the scientific community as a whole has a majority consensus on a specific minimum size of the universe. The topic has been discussed many times and it was concluded that the baseline value for Universe level will stay where it is until the above-mentioned requirement has been fulfilled.
- In cases where a verse exhibits unexplainable and irreconcilable inconsistency, every feat should be taken into account, including those of Toon Force users. The character's rating should be determined based on the tier that is most consistent or reliable, considering their specific nature and purpose. This could involve identifying low ends as PIS (Plot-Induced Stupidity) and high ends as outliers, rather than using the “Varies” rating.
- Toon Force characters whose power levels vary involuntarily cannot be locked into specific tiers. While they may not necessarily be thread-banned, their unpredictable power fluctuations make it difficult to create fair and balanced matches. Opponents would need to be carefully selected to ensure a reasonable level of competition.
See also
- Black Hole Feats in Fiction
- Celestial Body Feats
- Creation Feats
- Mass-energy conversion feats
- Universal Energy Systems
Other statistics
Discussions
Discussion threads involving Attack Potency |